GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation.
نویسندگان
چکیده
The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested three hypotheses: (i) pharmacologically manipulating GABA levels in rat PnO alters LoRR, RoRR and nociception; (ii) propofol decreases GABA levels in the PnO; and (iii) inhibiting GABA synthesis in the PnO blocks hyperalgesia caused by sleep deprivation. Administering a GABA synthesis inhibitor [3-mercaptopropionic acid (3-MPA)] or a GABA uptake inhibitor [nipecotic acid (NPA)] into rat PnO significantly altered LoRR caused by propofol. 3-MPA significantly decreased LoRR for propofol (-18%). NPA significantly increased LoRR during administration of propofol (36%). Neither 3-MPA nor NPA altered RoRR following cessation of propofol or isoflurane delivery. The finding that LoRR was decreased by 3-MPA and increased by NPA is consistent with measures showing that extracellular GABA levels in the PnO were decreased (41%) by propofol. Thermal nociception was significantly decreased by 3-MPA and increased by NPA, and 3-MPA blocked the hyperalgesia caused by sleep deprivation. The results demonstrate that GABA levels in the PnO regulate the time for loss of consciousness caused by propofol, extend the concept that anesthetic induction and emergence are not inverse processes, and suggest that GABAergic transmission in the PnO mediates hyperalgesia caused by sleep loss.
منابع مشابه
Jap-00962-2005.r1 Nitric Oxide in B6 Mouse and Nitric Oxide-sensitive Soluble Guanylate Cyclase in Cat Modulate Acetylcholine Release in Pontine Reticular Formation
Acetylcholine (ACh) regulates arousal and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mouse caused a significant (p<0.0001) increase in ACh release. Microdialysis delivery of the nitric oxide donor NOC...
متن کاملNitric oxide in B6 mouse and nitric oxide-sensitive soluble guanylate cyclase in cat modulate acetylcholine release in pontine reticular formation.
ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-...
متن کاملPontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness.
STUDY OBJECTIVES GABAergic transmission in the oral part of the pontine reticular formation (PnO) increases wakefulness. The hypothalamic peptide hypocretin-1 (orexin A) promotes wakefulness, and the PnO receives hypocretinergic input. The present study tested the hypothesis that PnO administration of hypocretin-1 increases PnO GABA levels and increases wakefulness. This study also tested the h...
متن کاملGABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.
This study used in vivo microdialysis in cat (n=12) to test the hypothesis that gamma aminobutyric acid A (GABAA) receptors in the pontine reticular formation (PRF) inhibit acetylcholine (ACh) release. Animals were anesthetized with halothane to hold arousal state constant. Six concentrations of the GABAA receptor antagonist bicuculline (0.03, 0.1, 0.3, 1, 3, and 10 mM) were delivered to a dial...
متن کاملHomeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation
We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2014